
 

Supplementary Information 
 
Supplementary Note 1: Comparisons to standard software 
All timings were performed on a single machine with 128 GB RAM and two Intel Xeon E5-2670 
processors, each with 16 threads. All software was run with the maximum number of threads allowed 
(up to 32) on the 50X Illumina Platinum sequence of NA12878. A standard pipeline including BWA-
MEM 0.7.8, Samtools 0.1.18, and Picard Tools 1.99 required 29.2 hours to produce an analysis-ready 
BAM file. SpeedSeq performs these steps in 7.7 hours, a 3.8-fold speed improvement. The GATK 
(version 3.2-2-gec30cee) best practices workflow took a total of 36.4 hours for Unified Genotyper and 
40.2 hours for Haplotype Caller, even with manual parallelization of Haplotype Caller by chromosome1. 
For SV detection, SpeedSeq runs LUMPY, which is substantially faster than other leading tools. 
LUMPY took 0.5 hours to call SVs on NA12878, compared with 23.9 hours with Delly v0.5.9 and 18.3 
hours with GASVPro (release 2013-10-01)2,3. 
 Our implementations of FreeBayes and CNVnator are also faster than their original 
counterparts. SpeedSeq’s parallelized FreeBayes produced SNV and indel calls in 1.4 hours, compared 
to 19.9 hours for the single-threaded version and 2.2 hours with naïve parallelization by chromosome. 
CNVnator took only 0.5 hours, compared with 13.5 hours using the original (version 0.3), a 27-fold 
speed improvement. 

Our parallelized software implementations demonstrate little or no difference from the original 
versions. SAMBLASTER produces nearly identical output to Picard Tools duplicate marking4. Our 
parallelized FreeBayes output differs from the single-threaded standard version at 1,310/4,333,589 
sites (0.03%), with only 43 of these variants validating against the GIAB truth set. In our implementation 
of CNVnator, there were minor differences in output due to the use of a lookup table and a slight loss of 
floating-point precision. Copy number variable regions differed by ~2,300 bp over the entire genome 
and often corresponded to ambiguous CNV calls with low-amplitude copy number deviations and low 
confidence scores. 
 
Supplementary Note 2: Characteristics of miscalled variants 
Non-unique 100-mers harbored higher percentages of false positive and false negative SNVs, and both 
SNVs and indels showed increased false positive rates in satellite repeats (Supplementary Table 1). 
We were not able to evaluate the role of segmental duplications and simple repeats in variant calling 
accuracy because the Genome in a Bottle truth set excluded these features, however, we expect 
performance to be similarly diminished in these regions. 

Clusters of nearby variants can complicate variant detection due to misalignment, and indeed 
false positives were enriched in their proximity to indels, with 16.9% of false positive SNVs located 
within 10 bp of an indel compared to 0.06% of true positives. Upon manual inspection, many of these 
resulted from complex variants where flanking indels caused SpeedSeq to call phantom SNVs. A 
smaller portion of miscalls was due to different representations of the same variant, despite our 
adherence to the variant normalization protocols used by the Genome in a Bottle Consortium5. This 
reflects a persistent deficiency in tools to compare VCF files, and suggests that our metrics likely 
underestimate SpeedSeq’s true performance. 

To characterize the nature of miscalled SVs, we used their composite long-read/1KGP 
validation status to assess whether they were true (TP) or false positives (FP), and counted the number 
of SVs in which either of the breakends overlapped with annotated genomic features. We expressed 
this count as a percentage of the number of true positives (N=3,388) or false positives (N=3,088) 
(Supplementary Table 1). False positives overlapped more frequently with simple repeats (TP: 10.6%, 
FP: 29.4%) and segmental duplications (TP: 4.5%, FP: 23.7%). However, we note the important caveat 
that SVs in repetitive regions of the genome are also less likely to validate by PacBio or Illumina 
Moleculo long-reads, and may have been under-ascertained by 1KGP SV mapping efforts, and 



 

therefore some of this enrichment may be due to technical deficiencies in validation (Supplementary 
Table 1). 
 
Supplementary Note 3: De novo variant detection 
Identification of de novo variants from a family trio is a common WGS application and a natural 
extension of SpeedSeq’s multi-sample variant detection functionality. To evaluate the performance of 
our tools, we defined a “trio” from the CEPH 1463 pedigree in which NA12878 represented the child, 
NA12878’s biological mother (NA12892) represented one parent, and NA12877 (an unrelated 
individual) represented her father (Supplementary Fig. 4). Thus, the truth set of 288,409 de novo 
SNVs were defined by those variants that were present in the NA12878 GIAB 2.17 variant truth set but 
absent from NA12877 and NA12892, as determined by an independent variant set from Real Time 
Genomics6. Using the default minimum variant quality score of 1 and no additional filtering, SpeedSeq 
detected 98.3% of the “de novo mutations” with a false discovery rate of 5.9%. These putative mutation 
calls can be further refined within GEMINI (or using ad hoc scripts) by annotating known 
polymorphisms (e.g., dbSNP, 1KGP, NHLBI-ESP, ExAC), and by filtering for known sources of false 
positives. For example, simply requiring all three samples to have a minimum read-depth of 30 at 
putative mutation sites – a built-in filtering parameter in GEMINI – reduced FDR to 3.2%, with a minor 
effect on sensitivity (97.1%). Functionally relevant de novo mutations can be prioritized by filtering on 
diverse annotations and variant impact scores. Of course, reducing false positives to very low levels – 
as required for mutation rate studies – is a more difficult problem that requires extensive probabilistic 
filtering7,8. 
 
Supplementary Note 4: Excluded regions 
Despite the high quality of the human reference genome, artifacts remain in low-complexity regions and 
unannotated paralogous sequences that delay processing time and confound variant interpretation. 
Thus, we have excluded a static set of high-depth regions in the human genome from SNV, indel, and 
SV breakpoint calling modules of SpeedSeq. These regions exhibit an aberrant increase in sequencing 
coverage depth where reads from disparate parts of the genome accumulate, violating the diploid 
assumption of downstream variant calling algorithms. Most high-depth regions are caused by mis-
assembled regions of the reference genome, where moderate or high copy repeats have been 
collapsed into a single (or few) copies, causing read pile-ups.  
 To identify these high-depth regions, we aligned reads from the CEPH 1463 pedigree to 
GRCh37 with BWA-MEM and measured aggregate coverage depth from all 17 family members plus 
one replicate. We then excluded the 15.6 Mb (0.6% of the genome) where the depth was greater than 2 
× mode coverage + 3 standard deviations (Supplementary Fig. 4). While this static set of excluded 
regions was based on a single large family, the depth cutoff accommodates a 2-fold increase in copy 
number relative to the reference genome – corresponding to a homozygous duplication (4 copies) in a 
genomic region that is single copy in the reference – minimizing the bias toward fixed polymorphism in 
that family. In the future, we envision that excluded genomic regions will be defined by a much larger 
set of high-quality human genomes from diverse populations. For structural variation detection with 
LUMPY, we also exclude the mitochondrial genome, which is prone to false positive calls due to 
extremely high depth. These regions are not excluded from read-depth analysis using CNVnator, so it is 
possible (albeit technically complicated) to detect CNVs in these regions using SpeedSeq.  

We tested for feature enrichment in repetitive elements from RepeatMasker and mappability 
from the CRG Alignability track9,10. As expected, the excluded regions are highly enriched in repetitive 
regions of the genome that are known to be poorly assembled in the reference genome including 
satellite repeats (54-fold enrichment), segmental duplications (9-fold), and sequences near centromeres 
(28-fold) and other assembly gaps (25-fold) (Supplementary Table 5). 
 



 

 SNVs Indels SVs 

Feature 
TP 

N=2,798,941 
FP 

N=12,070 
FN 

N=3,974 
TP 

N=327,165 
FP 

N=3,529 
FN 

N=38,527 
TP 

N=3,388 
FP 

N=3,308 
Long interspersed 

nuclear elements (LINE) 22.5% 18.7% 21.3% 23.6% 18.4% 14.5% 23.3% 20.6% 

Short interspersed 
nuclear elements (SINE) 16.6% 19.6% 40.9% 21.4% 21.8% 34.3% 41.8% 24.5% 

Long terminal repeat 
elements (LTR) 10.5% 16.8% 6.4% 7.1% 8.6% 5.5% 9.7% 11.5% 

DNA repeat elements 
(DNA) 3.6% 3.2% 1.1% 3.7% 2.6% 2.1% 2.9% 3.2% 

Satellite repeats 0.2% 5.8% 0.1% 0.1% 0.9% 0.1% 0.8% 1.5% 

Simple repeats (micro-
satellites) - - - - - - 10.6% 29.4% 

Segmental duplications - - - - - - 4.5% 23.7% 

Within non-unique 100-
mer 7.5% 13.5% 43.7% 4.6% 4.8% 7.9% 50.0% 40.4% 

Within 1 Mb of 
centromere 1.1% 1.7% 3.0% 1.0% 1.1% 1.4% 2.8% 5.4% 

Within 1 Mb of telomere 0.5% 5.7% 0.3% 0.4% 1.5% 0.3% 1.1% 4.3% 

Within 10 kb of 
assembly gap 0.1% 1.6% 0.3% 0.1% 0.3% 0.1% 0.1% 1.4% 

 
Supplementary Table 1: Annotation enrichment of miscalled variants. Cells denote the 
percentage of true positives (TP), false positives (FP), and false negatives (FN) in each variant class. 
Validations of SNVs and indels were performed against the Genome in a Bottle (GIAB) truth set, and 
SVs against a combination of the 1000 Genomes callset and PacBio/Moleculo long-reads. Values for 
SNVs and indels within simple repeats and segmental duplications are not shown because these 
features are excluded from the GIAB truth set, and only diallelic variants were interrogated in this 
experiment. False negatives for SVs are not shown because the long-read validation strategy does not 
produce such results. Note that the enrichment of true positive SV calls in SINEs is due to the detection 
of variable SINE insertions.  
 

Sample Type Detected Known Sensitivity 
COSMIC 
variants 
detected 

COSMIC 
variants 
known 

COSMIC 
variant 

sensitivity 
TCGA-B6-A0I6 Breast 74 79 93.7% 2 2 100.0% 
TCGA-A6-6141 Colorectal 485 510 95.1% 14 14 100.0% 
TCGA-CA-6718 Colorectal 1,280 1,307 97.9% 44 44 100.0% 
TCGA-D5-6540 Colorectal 779 819 95.1% 19 20 95.0% 
TCGA-13-0751 Ovarian 30 31 96.8% 3 3 100.0% 

Overall 
 

2,648 2,746 96.4% 82 83 98.8% 
 
Supplementary Table 2: Sensitivity in detecting somatic mutations in tumor-normal pairs. We 
analyzed five tumor-normal pairs to assess SpeedSeq’s sensitivity in detecting 2,746 somatic mutations 
that had been previously reported by The Cancer Genome Atlas (TCGA) through deep exome 
sequencing and validated by an orthogonal method. Variants within genes in the COSMIC cancer 
census gene set defined the “cancer variants” subset. 
 



 

 Type Correctly 
genotyped 

Percent 
correctly 

genotyped 
Detected Detection 

sensitivity 
Informative 

occurrences 
Unique 
variants 

All SVs 

All 7,203 95.1% 7,578 90.2% 8,397 1,722 
Deletion 5,768 95.5% 6,042 90.8% 6,651 1,342 

Duplication 860 93.8% 917 89.5% 1,025 217 
Inversion 555 92.7% 599 85.9% 697 152 
Distant 20 100.0% 20 83.3% 24 11 

Heterozygous 
SVs 

All 6,845 96.6% 7,083 89.9% 7,883 1,505 
Deletion 5,421 96.1% 5,641 90.4% 6,240 1,173 

Duplication 853 97.9% 871 89.2% 976 193 
Inversion 551 100.0% 551 85.7% 643 128 
Distant 20 100.0% 20 83.3% 24 11 

Homozygous 
SVs 

All 358 72.3% 495 96.3% 514 217 
Deletion 347 86.5% 401 97.6% 411 169 

Duplication 7 15.2% 46 93.9% 49 24 
Inversion 4 8.3% 48 88.9% 54 24 
Distant 0 - 0 - 0 0 

 
Supplementary Table 3: Detection sensitivity and genotyping accuracy of structural variants in 
the CEPH 1463 grandchildren. SNV-based haplotype phasing of genomic segments in the CEPH 
1463 produced 1,722 variants (1,505 heterozygous and 217 homozygous) that were predicted in the 11 
grandchildren. 
 

 
Number of 

SVs 
Number of 
deletions 

Number of 
deletions validated 

Percent of deletions 
validated 

≥ 7 support 8,456 5,540 4,369 78.9% 
Monomorphic 2,525 1,356 1,151 84.9% 
Polymorphic 5,931 4,184 3,218 76.9% 

Mendelian 
transmission 5,509 3,853 3,047 79.1% 

Mendelian 
violation 422 331 171 51.7% 

Traceable from 
grandparent 1,722 1,342 1,059 78.9% 

 
Supplementary Table 4: Filtering schematic for 8,456 SVs detected by SpeedSeq in the CEPH 
1463 pedigree. Here we show the number of SVs and their validation efficiency at each stage of 
filtering to produce the 1,722 SVs (bottom left) that were used in SV benchmarking (Supplementary 
Table 3). 
 



 

Feature % of mappable 
genome 

% of SpeedSeq 
excluded regions 

Fold 
enrichment 

Long interspersed 
nuclear elements (LINE) 22.2% 12.8% 0.6 

Short interspersed 
nuclear elements (SINE) 13.9% 6.7% 0.5 

Long terminal repeat 
elements (LTR) 9.3% 5.2% 0.6 

DNA repeat elements 
(DNA) 3.5% 1.5% 0.4 

Satellite repeats 0.5% 25.3% 54.0 
Simple repeats (micro-

satellites) 0.9% 2.7% 2.9 

Segmental duplications 5.8% 54.3% 9.4 
Within non-unique 

100mer 10.7% 57.3% 5.4 

Within 1 Mb of 
centromere 1.3% 36.4% 27.8 

Within 1 Mb of telomere 1.3% 4.8% 3.6 
Within 10 kb of 
assembly gap 0.3% 6.4% 24.7 

 
Supplementary Table 5: Annotation enrichment of the SpeedSeq excluded regions. Cells denote 
the percentage of the mappable genome contained in each annotation class and the percentage of 
base pairs in the 15.6 Mb SpeedSeq excluded regions contained in the annotation track, along with the 
fold enrichment of the annotation class in the SpeedSeq excluded regions. 
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